首页> 外文OA文献 >RbcS suppressor mutations improve the thermal stability and CO2/O2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylase/oxygenase
【2h】

RbcS suppressor mutations improve the thermal stability and CO2/O2 specificity of rbcL- mutant ribulose-1,5-bisphosphate carboxylase/oxygenase

机译:RbcS抑制子突变改善了热 的稳定性和CO2 / O2特异性 rbcL-突变核糖-1,5-双磷酸酯 羧化酶/加氧酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the green alga Chlamydomonas reinhardtii, a Leu290-to-Phe (L290F) substitution in the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is coded by the chloroplast rbcL gene, was previously found to be suppressed by second-site Ala222-to-Thr and Val262-to-Leu substitutions. These substitutions complement the photosynthesis deficiency of the L290F mutant by restoring the decreased thermal stability, catalytic efficiency, and CO2/O2 specificity of the mutant enzyme back to wild-type values. Because residues 222, 262, and 290 interact with the loop between β strands A and B of the Rubisco small subunit, which is coded by RbcS1 and RbcS2 nuclear genes, it seemed possible that substitutions in this loop might also suppress L290F. A mutation in a nuclear gene, Rbc-1, was previously found to suppress the biochemical defects of the L290F enzyme at a posttranslational step, but the nature of this gene and its product remains unknown. In the present study, three nuclear-gene suppressors were found to be linked to each other but not to the Rbc-1 locus. DNA sequencing revealed that the RbcS2 genes of these suppressor strains have mutations that cause either Asn54-to-Ser or Ala57-to-Val substitutions in the small-subunit βA/βB loop. When present in otherwise wild-type cells, with or without the resident RbcS1 gene, the mutant small subunits improve the thermal stability of wild-type Rubisco. These results indicate that the βA/βB loop, which is unique to eukaryotic Rubisco, contributes to holoenzyme thermal stability, catalytic efficiency, and CO2/O2 specificity. The small subunit may be a fruitful target for engineering improved Rubisco.
机译:在绿藻莱茵衣藻中,先前发现由叶绿体rbcL基因编码的核糖-1,5-双磷酸羧化酶/加氧酶(Rubisco)的大亚基中的Leu290到Phe(L290F)取代是受到第二位Ala222到Thr和Val262到Leu取代的抑制。这些取代通过将突变酶的降低的热稳定性,催化效率和CO2 / O2特异性恢复到野生型值,从而弥补了L290F突变体的光合作用不足。由于残基222、262和290与Rubisco小亚基的β链A和B之间的环相互作用,该环由RbcS1和RbcS2核基因编码,因此看起来该环中的取代也可能会抑制L290F。先前已发现,在翻译后步骤中,核基因Rbc-1的突变可抑制L290F酶的生化缺陷,但该基因及其产物的性质仍然未知。在本研究中,发现三个核基因抑制剂彼此相连,但与Rbc-1基因座没有联系。 DNA测序表明,这些抑制株的RbcS2基因具有突变,可导致小亚基βA/βB环中的Asn54到Ser或Ala57到Val取代。当存在于具有或不具有常驻RbcS1基因的野生型细胞中时,突变的小亚基可提高野生型Rubisco的热稳定性。这些结果表明,真核生物Rubisco独有的βA/βB环有助于全酶热稳定性,催化效率和CO2 / O2特异性。小亚基可能是工程改良Rubisco的丰硕目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号